《比例的意义》教案

时间:2024-07-25 17:13:29
《比例的意义》教案(15篇)

《比例的意义》教案(15篇)

作为一位杰出的教职工,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!下面是小编整理的《比例的意义》教案,欢迎阅读,希望大家能够喜欢。

《比例的意义》教案1

教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。

教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。

教学重点:理解比例的意义和基本性质。

教学难点:用比例的意义或性质判断两个比成不成比例。

教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。

教具、学具准备:小黑板,教学课件

教学步骤

一、复习铺垫

l.什么叫做两个数的比?请你说出两个比。(教师板书)

2.什么是比的比值?上面两个比的比值是多少?

3.引入新课。

我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)

二、导入新课

1.教学比例的意义。

让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)

(1) 3 :5 24 :40 (2) :7.5 :3

追问:比值相等,说明每组里两个比怎样?

指出:表示两个比相等的式子叫做比例。

说一说,上面两个等式表示的是怎样的式子?

2.下面两个比之间的哪些○里能填“=”,为什么?

1 :2○3 :6 0.5 :0.2○5 :2

1.5 :3○15 :3:2○:1

提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。

3.教学例1。

出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。

让学生根据比例的意义,在( )里填上适当的数。

3 :6=5 :( ) 0.8 :( )=1 :

4.教学比例的基本性质。

向学生说明比例各部分的名称。

让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。

5.判断能否组成比例。

出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?

强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?

让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?

三、巩固练习

1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?

2. 完成“练一练”。

指名4人板演.集体订正.说说是怎样判断的?

3.做练习六第1题。

让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。

4.做练习六第2题。

让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)

5.完成练习六第3题。

学生先观察、计算,然后口答,说明理由。

四、全课小结

这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?

五、布置作业

练习六第4、5题。

《比例的意义》教案2

教学目标

1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。

2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。

3、体验获得成功的乐趣,建立学好数学的自信心。

教学重难点

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例。

教学工具

ppt课件

教学过程

请同学们回忆一下上学期我们学过的比的知识,谁能说说:

1、什么叫做比?比的书写形式有哪些?

2、什么叫做比值?

一、情境引入

同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。

(生齐声说:升旗仪式)

课件出示:升旗仪式的情景

你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?

不了解是吧?那老师告诉大家:

课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。

提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?

指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)

在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。

那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?

那么下面呢我们看一下老师收集到的一些信息。

课件出示不同场合下的国旗

课件出示:不同场合下的国旗

提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。

(2)学校的国旗长2.4米,宽1.6米。

(3)教室里面的国旗长60厘米,宽40厘米。

(4)会议桌上的国旗长15厘米,宽10厘米。

那我们现在看到的这些国旗的大小都一样吗?

师小结:在不同的场合的国旗的大小是不一样的。……此处隐藏16067个字……间的对应关?可用怎样的函数关系式表示?

 

1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.

(1)当y1-y2=4时,求m的值;

(2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).

26.1.2反比例函数的图象和性质:课文练习

1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是(  )

A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[

B.它们的图象都是轴对称图形

C.它们的图象都是中心对称图形

D.当x>0时,两个函数的函数值都随自变量的增大而增大

《比例的意义》教案15

教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习

1.让学生说说什么是成正比例的量:

2.用投影片出示下面的题:

(1)下面各题中哪两种量成正比例?为什么?

①笔记本单价一定,数量和总价:

⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

二、导入新课

教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

三、新课

1.教学例4。

出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:

(1)表中有哪两种量?

(2)所需的加工时间怎样随着每小时加工的个数变化?

(3)每两个相对应的数的乘积各是多少?

学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

10 × 60 =600。

30 × 20 =600。

40 × 15 =600,

“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

2.教学例5。

用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

(1)理解题意,填写装订本数。

“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

“这40本是怎么计算出来的?”(用600÷15)

“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

(2)观察分析表中两种量的变化规律。

让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

15 40

20 30

25 24

一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

1,单价一定.数量和总价。

2,路程一定,速度和时间。。

3,正方形的边长和它的面积。

1.时间一定,工效和工作总量。

二、导入新课

教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

板书课题:正比例和反比例的比较

三、新课

1.教学例7。

出示例7的两个表:

表1 表2

让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

在表l中: 在表2中:

相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

一定。因此,路程和时间 ,路程是一定的。因此,速

成正比例关系。 度和时间成反比例关系

然后提问:

(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

板书:速度×时间=路程

=速度 =速度

教师:当速度一·定时,路程和时间成什么比例关系?

教师:当路程一定时,速度和时间成什么比例关系?

教师:当时间一定时。路程和速度成什么比例关系?

2.比较正比例和反比例关系。

教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

四、巩固练习

1.做教科书第28页“做一做”中的题目。

让学生自己填,并说一说为什么。

2.做练习七的第1—2题。

教师巡视,个别辅导,最后订正。

五、小结

教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

《《比例的意义》教案(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式