人教版初中数学教案
作为一名人民教师,往往需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的人教版初中数学教案,欢迎大家分享。
人教版初中数学教案1教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四巩固提高
人教版初中数学教案2总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)、
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
人教版初中数学教案32.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
人教版初中数学教案4知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本、这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等、(学生回答,教师追问)
人教版初中数学教案5教学目标:
(1)能够根据实际问题,熟练地列出二次 ……此处隐藏3322个字……/p>
①若∠1 = 110°,则∠2 = °.理由:.
②若∠1 = 110°,则∠3 = °.理由:.
③若∠1 = 110°,则∠4 = °.理由:.
(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2=.
学生提问,并找出回答问题的同学.
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1、平行线的性质1、2、3;
2、用“运动”的观点观察数学问题;
3、用数形结合的方法来解决问题.
(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.
②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.
人教版初中数学教案8教学目标:
1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.
2.理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角的性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程:
一、创设情境,引入新课
引导语:
我们生活的世界中,蕴涵着大量的相交线和平行线.
本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.
二、尝试活动,探索新知
教师出示一块布片和一把剪刀,表演剪刀剪布的过程.
教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?
学生观察、思考、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.
教师提问:我们可以把剪刀抽象成什么简单的图形?
学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.
教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)
学生根据观察和度量完成下表:
两条直线相交、所形成的角、分类、位置关系、数量关系
教师提问:
如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?
学生思考回答:
只会改变数量关系而不会改变位置关系.
师生共同定义邻补角、对顶角:
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.
教师提问:
你同意下列说法吗?如果错误,如何订正?
1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.
2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.
3.邻补角是互补的两个角,互补的两个角也是邻补角.
学生思考回答:1、2是对的,3是错的.
第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.
教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.
教师把说理过程规范地板书:
在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角的性质:
对顶角相等.
强调对顶角的概念与对顶角的性质不能混淆:
对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
三、例题讲解
【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、巩固练习
1.判断下列图中是否存在对顶角.
2.按要求完成下列各题.
(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.
eq o(sup7(,图(1)) ,图(2))
(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?
【答案】
1.都不存在对顶角.
2.(1)对顶角,邻补角.
对顶角:∠AOC和∠BOD,∠AOD和∠BOC.
邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、课堂小结
教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
教学反思
通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。
文档为doc格式